

TRANSPORTATION'S IMPACT ON SUSTAINABLE ENERGY THROUGH LIQUID BIOFUELS: A RESEARCH STUDY CENTRED ON CHINA.

Yan Hao 1*, Intan Irieyana Zulkepli 1, Mohammad Nizamuddin Inamdar 1, Aiman Al-odaini 1

1 Lincoln University College, Petaling Jaya, Malaysia.

*Corresponding author: Yan Hao, Lincoln University College, Petaling Jaya, Malaysia.

ABSTRACT

Green solutions are urgently needed since the transportation industry is a major producer of energy and a major emitter of greenhouse gases on an international basis. This research digs into the prospect of liquid biofuels—including bioethanol, biodiesel, and bio-jet fuel—to green the Chinese transportation network. The study assesses possibilities for biofuel use to reduce greenhouse gas emissions, increase the availability of energy, and encourage sustainable development in considering China's fast-growing economy and heavy use of fossil fuels. A statistical method was used to evaluate information collected from 864 respondents using SPSS. Factor evaluation was used to confirm that the measuring scales were robust. Data indicates that environmentally amicable electricity techniques have a statistically significant association with transportation practices. By reducing the release of greenhouse gases as well as replacing the use of fossil fuels, biodiesel have the possibility to mitigate the detrimental effects of a warming planet in developing nations. There are a number of negatives to using biofuels, such as conflict for scarce resources, greater costs of production, and technical challenges. Expansion may be accelerated by better technology and regulatory considerations. The report highlights how important it is to improve rules, develop new technologies, and build superior facilities in order to create a sustainable transportation system. The research then recommends investing more in biofuel production to help China transition to renewable energy and conservation. These suggestions add to the renewable energy debate. They mention that liquid biofuel advances may support meeting global climate goals and secure a sustainable future.

Keywords: Transportation, Liquid biofuels, Sustainable energy, Fossil fuel, Greenhouse gases.

INTRODUCTION

The transportation sector today uses 29% of the planet's energy, which displays how quickly it has grown and how urgent it is in the energy market. Because the transportation industry depends so heavily on fossil fuels for energy, carbon and air pollution have become major issues. Also, both industrialised and developing nations are looking for long-term and environmentally friendly alternatives since the safety of the world is unclear and fossil fuel prices are quite unstable. Liquid

biofuels like bioethanol, biodiesel, and bio-jet fuel are viewed as the best option since they don't release carbon and have minimal emissions. They also play a bigger part in making transportation more sustainable. Liquid biofuels made up 4% of all vehicle fuel in 2020, and this number is expected to grow over time. With a global contribution of fourteen percent (14% of all pollutants), transport was the fourth most polluting industry in 2014. Large vehicles' effects on air pollution and other pollutants or airborne pollutants have recently come to light as a major concern, thanks to the increase in the release of carbon dioxide that triggered global warming. It is believed that if the transport sector were to drastically cut down on pollution, acid rain and global warming would be much lessened (Zhang, 2023). Nearly all of the renewable energy utilised by the transportation sector presently comes from fossil fuels. Biofuels, fuel cells, and solar power are some of the alternative fuels that have been suggested as a means to balance the massive environmental impacts of fossil fuel consumption. Biofuel is being assessed by researchers and policymakers as a potential choice to petrol with the potential to lower air pollution (Panchuk et al., 2020).

BACKGROUND OF THE STUDY

China's green financial development since 2008 has a great impact on renewable energy, transportation infrastructure, and the green economic growth of this country. Chinese governments and politicians have been compelled to look for alternative solutions due to recognising the negative impacts of climate change and the depletion of limited fossil fuel supplies. In recent years, China's transportation system and renewable energy sources have come a long way. Not only does China have more people than any other country, but it also produces more carbon dioxide than any other. Anyone may get useful knowledge into the possible benefits and challenges of promoting green economic growth by studying the Chinese context (Ding & Liu, 2023). China is fast becoming the charge in renewable energy. Biomass, water-powered solar, and wind turbines have been the primary sources of energy for the country. Feed-through fees, subsidies, and legal structures are some of the government programmes that have helped these efforts to promote the use of sources of renewable energy. Using renewable energy technology has not only lessened China's effect on the environment, but it has also opened up new commercial prospects. A further improvement in China's energy security has been brought about by the expansion of renewable energy sources. The country has been able to reduce its reliance on petroleum imports and diversify its sources of energy as a result of this. The Chinese government has acknowledged the significance of having infrastructure for transportation that is friendly to the environment and has taken measures to promote the utilisation of alternative modes of transportation. It is exciting to see that an increasing number of individuals in China are opting to use electric vehicles (Liu et al., 2020).

PURPOSE OF THE RESEARCH

The goal of the study project is to look at how liquid biofuels may change China's transport system for the better and make it more ecologically friendly. Since its economy is expanding rapidly and because it depends so heavily on conventional fossil fuels, China has had a lot of environmental issues. It also put out a lot of carbon dioxide and other pollutants into the air. This study aims to ascertain if and how the transportation industry may benefit from reduced carbon emissions, enhanced energy security, and the promotion of sustainable development via the use of liquid biofuels such as biodiesel and ethanol. The research aims to examine the current state of biomass fuel manufacturing and consumption in China, pinpoint the scientific, economic, and policy challenges hindering broad acceptance, and consider the sustainability benefits and possible drawbacks linked to extensive deployment. The research endeavoured to clarify how liquid biofuels could function as a feasible substitute for traditional gasoline and diesel by analysing China's distinctive social and financial environment, energy regulations, cultivation methodologies, and technological betterment. In furtherance of providing light on the possibility of biofuels as a renewable source of energy, the investigation hopes to assist policymakers, business leaders, and charitable organisations with practical data and policy suggestions. The final objective is to contribute to the international discourse on alternative energies by sharing the Chinese viewpoint and insights learnt. This will help the country evolve forward towards a more sustainable and ecologically conscious transportation system. This study aims to guide additional inquiry, monetary investment, and development of policies that correspond with China's pledge to achieve sustainability and energy independence objectives.

LITERATURE REVIEW

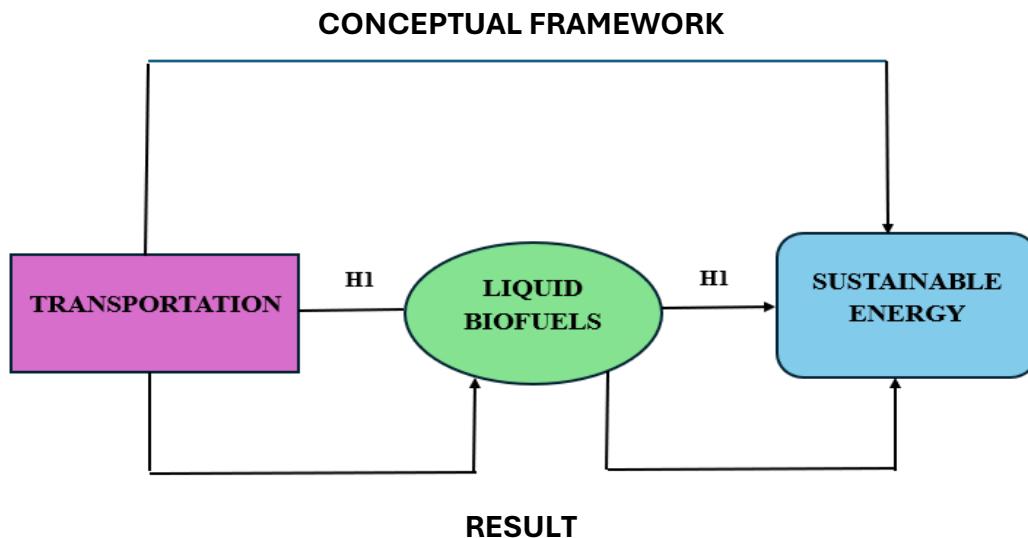
Though they are mutually dependent, energy and transportation are very different from one another and may even be in conflict with one another at times. Practically meeting society's adequate and natural requirements for mobility while avoiding social, economic, environmental, and resource expenses is what anybody implies when they talk about ecological road transport. They also suggest that it ought to accomplish harmonic integration with other sectors of the economy and society. According to the time period, supplies of resources, and environmental limits, effective road transportation systems may vary between regions. Developing public transport should be the top priority for most of China's major cities if they want to accomplish sustainable road travel. Therefore, green road transport energy fulfils the energy needs of an environmentally friendly road transport system in the most effective way possible while minimising the costs to society, the economy, the environment, and the resources that are accessible. One of the most fundamental resource limits for road transport as well as various social sectors is energy, which is why it frequently reappears in concerns about resource scarcity. To minimise the combination of social, economic, environmental, and material costs in the energy consumption fulfilment process, an environmentally friendly highway energy system actively organises and enhances transportation-related operations throughout the entire society, as opposed to passively providing enough energy

to fulfil all of the renewable energy requests from the road transit industry (Ebadian et al., 2020). It is probable that biofuels will be able to bypass the conventional hurdles. Many see them as prospective solutions to the transport sector's difficulties with oil consumption and releases of greenhouse gases. Also, there is no requirement for changes to the existing transportation system for biofuels. True, biofuels are becoming increasingly popular in many countries. Because of their excellent integration with both components, small amounts of bioethanol blends, such as 10% bioethanol in normal petrol, are already supplied at several refuelling stations around the world. Biodiesel is also being blended with regular diesel in a number of countries right now (Nogueira et al., 2020). Biofuels could provide substantial energy while at the same time mitigating climate change. Governments have supported production aimed at increasing biofuel use in many countries. Farmers seek additional income, and biofuels may have the potential to promote rural development and access to energy in poorer countries. The industry has invested significantly in production and technology development. The number of scientific publications devoted to biofuels is growing rapidly (Das & Gundimeda, 2022).

RESEARCH QUESTION

How does transportation impact sustainable energy when considering liquid biofuels?

RESEARCH METHODOLOGY


Research Design: To carry out the inquiry, this research used a quantitative research strategy. SPSS version 25 was used for data processing. Descriptive statistics were used to simplify the demographic data. Using a 95% confidence interval (CI), researchers determined the amount of strength and trend of the connections by calculating odds ratios (OR). A p-value below 0.05 indicates a very significant result. Quantitative techniques are more preferred due to their capacity to do comprehensive statistical analyses and systematic assessments of survey outcomes.

Sampling: In order to accurately represent the study population, a random sample approach was used. According to the Rao-soft procedure, 857 people constitute the bare minimum for a valid sample. In all, 948 questionnaires were sent out. Because of insufficient information, 31 out of 895 replies were not included in the final tally. As a result, 864 legitimate replies made up the overall sample size.

Data and Measurement: The research used a random selection technique to choose respondents, giving every member of the public an equal opportunity to be a part of it. Surveys with two parts were used for data collection: (A) basic demographics and (B) a 5-point Likert scale for elements related to digital and traditional channels. The use of the internet and other secondary sources also contributed to the data set.

Statistical Software: The statistical analyses have been carried out by the researchers using SPSS 25 and MS-Excel.

Statistical Tools: The data's fundamental properties were understood via the use of a descriptive analysis technique. Researcher used factor analysis to check how stable and consistent the measurement scales were.

Factor Analysis: One typical strategy in factor analysis (FA) is to confirm the underlying underpinning of an ensemble of measuring items. It is often believed that invisible variables have a direct impact on the apparent factors' outcomes. Precision analysis (FA) is one method that uses frameworks. Linking observable events, their causes and measuring mistakes is an important goal of this effort. Applying the Kaiser-Meyer-Olkin (KMO) method might reveal if the information is amenable to factor assessment. In order to make certain that the total sample size is enough, investigators verify that each model component has a sample size. Several of the elements have a common variant, according to the findings. Factor estimate performs more effectively with data that has lower percentages. A number ranging from zero to one is the output of the KMO algorithm. A KMO value between 0.8 and 1 shows that testing is needed. Insufficient sampling has been detected by a KMO below 0.6, and it needs immediate action to correct the problem. Consider the consensus among writers; as a result, 0.5 is often chosen, and the normal range of values is 0.5 to 0.6. The KMO score approaches zero when the fraction of total connections involving partial encounters reaches a statistically significant level. Significant connections greatly complicate component evaluation. The frequency coverage is 0.050 to 0.059.

- 0.60 - 0.69 inadequate. Median ratings frequently reside within the range of 0.70 to 0.79. A common range for values of points is 0.80 to 0.89. Something extremely unusual occurs in the range of 0.90 to 1.00.

Table 1. Kaiser-Meyer-Olkin (KMO) and Bartlett's Test.

KMO and Bartlett's Test		
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.895
Bartlett's Test of Sphericity	Approx. Chi-Square	3252.968
	df	190
	Sig.	.000

The matrix structures were shown to be highly related by the results of the Bartlett's sphericity test. A sample adequacy of 0.895 has been obtained by Kaiser-Meyer-Olkin. The investigators achieved a p-value of 0.00 utilising Bartlett's sphericity test. The incorrectness of the connection matrix was demonstrated by Bartlett's sphericity investigation.

INDEPENDENT VARIABLE

Transportation: Massive investments in transportation's physical infrastructure have paid off financially for society; this industry additionally played a key role in the development of global commerce. Identifying the big difficulties in implementing big changes in policy and resolving the shortcomings of disjointed management of decisions requires redefining transport governance. Within this framework, researcher offers complete approaches that draw on theories from speciality development and transition management to facilitate technical innovation as well as new modes of travel and commerce. Everyone worldwide now shares the responsibility of lowering carbon emissions and preserving energy. A zero-carbon country green transportation strategy in China is going to regulate the whole quantity of electric scooters and gasoline motorbikes, influence government funding programmes, and mandate the issuance and regulation of new motorcycle certificates (Shah et al., 2021). All of these components interact with other elements in order to create a system that is both complicated and dynamic, and it has a bearing not just on legislation but also on the manner of life that is now predominant. Before the development of regulations for China that will have an influence on the lives of millions of people, simulations happen in order to imitate the behaviour of green transport systems and the results of associated laws in a more limited and tightly controlled environment.

MEDIATING VARIABLE

Liquid Biofuels: Many nations, both emerging and advanced, are seeking sustainable and green alternatives to fossil fuels due to the fluctuation of their pricing and the threat they pose. Because of their carbon-neutrality and low emissions, liquid biofuels such as bioethanol, biodiesel, and bio-

jet fuel are seen as the most probable option for fuelling sustainable transportation. Projections for the future suggest that liquid biofuels will account for an increasing 4% of transportation. Liquid biofuels are easily responsive to changes regarding technology and government policy, and they may be created via a wide range of processes. Worries about the environment, high beginning and ongoing costs, technological limitations, and the need to cope with byproducts are among the greatest hurdles. All of the various types of liquid biofuels have distinctive and unique manufacturing processes, and they all have a strong link to the basic ingredients that come from biomass. There are numerous uses for liquid biofuels in the road transport and aviation industries, as well as in other functional sectors. As a further area of interest, this assessment of the life cycle of liquid biofuels occurs from the multiple perspectives of the ingredients, pretreatment, manufacturing process, and application. In addition, there are initiatives that bring attention to challenges that are related to the unreliable arrival of renewable energy sources, basic supplies, and manufacturing control (Tao et al., 2023).

DEPENDENT VARIABLE

Sustainable Energy: Energy needs have risen substantially as a result of the rapid growth of the world's economy, especially among nations that are presently in the process of developing. As an outcome of the understanding that the availability of fossil fuels which are required for generating energy is becoming less accessible and that environmental damage is tied to carbon dioxide released to the surroundings, there has been a rise in enthusiasm for preserving the sources of energy and safeguarding the environment (Opeyemi, 2021). Notwithstanding the fact that the percentage of electrical consumption generated by green energies has risen in the vast majority of economies as a result of the administration of substantial subsidies, standard energy sources and fossil fuels continue to have a dominant position among alternatives for electricity production, accounting for around 75% of the global market share. There have been three fundamental technology shifts that are necessary for the development of sustainable energy initiatives. For the sake of conserving the environment, it is crucial to replace fossil fuels with several kinds of renewable energy sources through replacement. The amount of carbon emissions generated by developed nations is the main factor that drives the need for establishing a strategy for sustainable energy (Lu et al., 2020).

Relationship between transportation and sustainable energy considering liquid biofuels: The transition from the use of fossil fuels to renewable forms of energy, such as wind and solar energy and hydroelectric energy, has an enormous impact on the reduction of carbon dioxide emissions and the mitigation of warming temperatures. This study also explores the amalgamation of advanced biofuels and electric cars, demonstrating how these two types of biofuels have the ability to revolutionise mobility by decreasing the number of emissions in the air and reducing reliance on renewable but limited resources. Nowadays, biofuels are used extensively as transportation fuels

across the globe. In order to accomplish its global climate change commitments, the International Energy Agency states that contemporary biomass is a crucial part of a potential low-carbon worldwide power system, namely for an environment where the average temperature of the Earth is limited to 2°C. By 2060, 29.6 EJ of biofuels and other sources of sustainable energy will have to be used to meet the two-degree scenario's energy requirements, which accounts for 29% of the world's total utilisation of energy. Although China accomplished outstanding results with the initial generation of bioethanol as a petrol substitute, the expansion of this renewable fuel type will need new methods for processing cellulosic biomass, as not numerous nations have access to vast areas of arable land. If someone wants to use biofuels on an extensive level without undermining food production or harming the environment or its services, everybody must utilise sustainable technology (Kumar & Sharma, 2024). The experimenter formulated the hypothesis that follows to assess the impact of transport on sustainable energy, taking liquid biofuels into account, in light of the first argument:

“ H_0 : There is no significant relationship between transport on sustainable energy, considering liquid biofuels.”

“ H_1 : There is a significant relationship between transport on sustainable energy, considering liquid biofuels.”

Table 2. H1 ANOVA Test.

ANOVA					
Sum					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	34328.635	304	5428.584	1,025.228	.000
Within Groups	497.510	559	5.295		
Total	46274.780	863			

Substantial outcomes are generated by this study. There is a statistically significant difference with a p-value of .000, which is within the .05 alpha level; the coefficient of determination (F) statistic is 1,025.228. researchers deny the null hypothesis and approve the alternative, " **H_1 : There is a significant relationship between transport on sustainable energy, considering liquid biofuels.**" as true.

DISCUSSION

Through the utilisation of liquid biofuels, the research's results highlight a substantial connection between transportation and environmentally friendly energy. A mathematical investigation confirming that changes in transportation behaviours could significantly affect the adoption and efficacy of environmentally friendly energy sources was conducted with a p-value of 0.000. This is

in accordance with what's already been written about how biofuels may be an effective replacement for fossil fuels, cutting down on emissions of greenhouse gases while benefiting the environment. A conceivable way to lower the impact of environmental degradation is the use of liquid biofuels as fuel in cars. This might be particularly helpful in growing nations like China, where emissions from vehicles account for an enormous share of the total. In addition to technical challenges, the research accentuated the key role of regulatory structures. improvements in technology and economic incentives in driving the shift to biofuel-powered transport. With their capacity to adapt to new regulations and technologies, biofuels have the ability to drive the shift to renewable energy sources. The upshots also imply that reducing reliance on international fossil fuels and increasing the use of liquid biofuels could heighten energy security. But to reach its full prospect, everybody must overcome hindrances like limited technology, costly production, and challenges for resources. Overall, the research outcomes support the idea that governing bodies should put more money into biofuel innovation and related laws so that everyone can progress towards a more tolerable transportation model that helps meet global climate targets. In light of increasing concerns about the environment and international ambitions for combating climate change, the correlation displayed in this study lends credence to the idea that changes in the transport sector are crucial to achieving larger sustainable energy objectives.

CONCLUSION

The comprehensive analysis indicates that transport is crucial in shaping the coming years of sustainable energy, especially with the support of liquid biofuels. Primarily due to their low emissions and potential for carbon neutrality, biofuels such as biomass diesel, bio aircraft fuel, and ethanol from plants have become promising alternatives to traditional fossil fuels in response to increasing energy demands and global environmental issues. The most significant factor in the study's effects is liquid biomass fuels, which indicate the important link between travel behaviour and advances in the evolution of environmentally friendly energy. This relation defines how biofuels may reduce reliance on petroleum, downsize CO₂ emissions, and advance energy security. This is especially compulsory for countries like China, which have seen fast economic expansion and ecological issues that need innovative solutions. This research also showed that policies that encourage the use and growth of biofuels could make transport networks more durable and long-lasting. The piece discussed how manufacturing has made it feasible for more people to use biofuels and how government programmes have helped make this possible. This helps the world's attempts to slow down resource loss and climate change. The study showed that biofuels made from oil could have a big impact on how green energies are regulated, but only if important technological advances are made and the government gives its approval. There are still problems in the supply chain and technological limits that need to be overcome. Basically, utilising biodiesel in cars is in line with worldwide climate agreements. It may assist countries in becoming financially secure and energy independent, which could lead to a more secure and lasting future.

REFERENCES

1. Das, P., & Gundimeda, H. (2022). Is biofuel expansion in developing countries reasonable? A review of empirical evidence of food and land use impacts. *Journal of cleaner production*, 372, 133501.
2. Ding, X., & Liu, X. (2023). Renewable energy development and transportation infrastructure matters for green economic growth? Empirical evidence from China. *Economic Analysis and Policy*, 79, 634-646.
3. Ebadian, M., van Dyk, S., McMillan, J., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. *Energy Policy*, 147, 111906.
4. Kumar, M., & Sharma, S. (2024). Renewable energy and sustainable transportation. *Role of Science and Technology for Sustainable Future: Volume 1: Sustainable Development: A Primary Goal*, 375-414.
5. Liu, B., Liu, S., Guo, S., & Zhang, S. (2020). Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. *International Journal of Hydrogen Energy*, 45(3), 1385-1398.
6. Lu, Y., Khan, Z., Alvarez-Alvarado, M., Zhang, Y., Huang, Z., & Imran, M. (2020). A critical review of sustainable energy policies for the promotion of renewable energy sources. *Sustainability*, 12(12), 5078.
7. Nogueira, L., Souza, G., Cortez, L., & de Brito Cruz, C. (2020). Biofuels for transpor. *Future energy*, 173-197.
8. Opeyemi, B. (2021). Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy. *Energy*, 228, 120519.
9. Panchuk, M., Kryshtopa, S., Sładkowski, A., & Panchuk, A. (2020). Environmental aspects of the production and use of biofuels in transport. *Ecology in transport: problems and solutions*, 115-168.
10. Shah, K., Pan, S., Lee, I., Kim, H., You, Z., Zheng, J., & Chiang, P. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. *Journal of Cleaner Production*, 326, 129392.
11. Tao, J., Chen, C., Wang, J., Li, J., Zhou, S., Chen, C., & Chen, G. (2023). Liquid biofuel powering the sustainable transport with a low-carbon emission: a review. *Progress in Energy*, 5(4), 042003.
12. Zhang, F. (2023). Biofuels for transportation. *Journal of Physics: Conference Series*, 2608(1), 012049.