

DEVELOPMENT OF HEALTH TECHNOLOGY METHODOLOGIES: A COMPREHENSIVE ANALYSIS FOCUSED ON MEDICAL DEVICES.

Dong Yuqing ^{1*}, Noraisyah Binti Tajudin ¹, Mohammad Nizamudin Inamdar ¹

¹ Lincoln University College, Petaling Jaya, Malaysia.

*Corresponding author: Dong Yuqing, Lincoln University College, Petaling Jaya, Malaysia.

ABSTRACT

The study's overarching goal is to find out how modern medical technology may improve healthcare delivery by making it easier to provide therapy that is more targeted, precise, and efficient. For better results across the board in healthcare, it is critical to incorporate these technologies into operational and clinical procedures. This is due to the fact that, over the next few years, medical technology will continue to advance at a rapid clip. Various pieces of medical equipment, such as those used for diagnosis, monitoring, and therapy, are thoroughly examined throughout this research. The objective of this research is to examine the consequences of different impacts caused by these practices in order to perform an analysis of the effect these medical equipment types have had on the growth and improvement of health technology practices. Think about how well the technology works, how easy it is to use, how well it integrates data, and how much better patient care and clinical decision-making are made possible by it. This study intends to assess the value of medical devices by looking at how well they streamline operations, how often they reduce medical mistakes, and how precisely they prescribe treatments. It has been used quantitative research methods to do this. We do this by combining qualitative and quantitative approaches to our study. The findings highlight the strategic use of medical devices as a major step forward in the evolution of health technology methods, and they advise enhancing interoperability, doing real-time monitoring, and providing personalised therapy.

Keywords: Medical Devices, Health Technology, Healthcare System, Health Information Technology, Patient Productivity.

INTRODUCTION

It is crucial to assess the value of medical devices before making decisions about coverage and adoption. Others have released value assessment frameworks to provide criteria for evaluating medical treatments, while others have highlighted the challenges of applying such frameworks to medical devices. Results and their applicability to the broader patient population are difficult to generalise due to the steep learning curves and frequent device modifications associated with medical devices. It is difficult to make broad statements on the worth of any given technology due to the wide variety of devices available and the fact that various stakeholders will have diverse goals and needs. In addition to payers, medical device manufacturers must

consider the views of hospital purchasing departments, GPOs, senior management, formalised value assessment committees, physicians, and patients. The technical characteristics and quality of the equipment, reimbursement, product pricing, device use, market structure, and the relative benefits in patient outcomes are some of the many factors that influence the incentives for each category. When making purchases, companies that buy in bulk, hospitals' buying departments, and value assessment committees may think about things like reimbursement payments, device pricing, and the total effect on operating and capital budgets. Considerations such as physician choice, device technicalities, and impact on patient outcomes may also be considered. However, it's quite unlikely that medical experts are the ones who decide which hospital diagnostic and treatment devices patients will use. If physicians and patients only visit facilities that have already made an investment in a certain system, they may not have much of a voice in the matter. Health technology methodology bodies provide data that informs decisions on the purchase of medical devices. The purpose of this study is to examine if and how this is true by doing a thorough literature evaluation. The study's focus was on health technology approaches that medical device companies may use when making procurement decisions. That way, they can make sure the data they gather is relevant to stakeholder requests and use it to inform their future strategies. Because of this study, institutions and organisations concerned with health technology methods are better able to convey critical concerns to procurement authorities and cut down on needless repetition of effort. Health technology methodology-focused sponsors and organisations will find useful information about what to report and how to disseminate that data in this endeavour. In this context, procurement and buy mean the same thing (Sun & Wong, 2019).

BACKGROUND OF THE STUDY

Careful consideration of health technology assessment procedures is required for the selection and ranking of medical equipment in order to maximise the utilisation of available resources. No matter how important this way of prioritising is, no one has come up with a consensus on it. For this reason, it is essential that we thoroughly investigate adaptable methods. Developing countries' healthcare systems simply cannot function due to a lack of appropriately trained medical professionals. The reason for this is that industrialised countries are facing a critical scarcity of doctors and other healthcare workers. The World Health Organisation (WHO) predicts that by 2035, there will be a decrease of more than 12.9 million healthcare providers in the world. Most of the world's ailments were caused by developing African countries, despite the fact that they only made up 3% of the healthcare personnel. There wasn't enough medical expertise in developing countries as so many individuals went to the West for better job opportunities (Chen, 2022). According to high-ranking WHO experts, medical advancements powered by modern device might lead to more health care equality. Artificial intelligence (AI) is finding increasing usage in healthcare systems throughout developed countries to enhance medical technology. If embraced and implemented, patient-centered care may provide a foundation for emerging countries. Revolutionising patient-centered care in rural parts of China might be achieved via the use of wearables, chatbots, electronic reservation systems, and

remote monitoring, all powered by artificial intelligence. This is especially true in Africa, a continent with a high rate of mobile device use. By improving the connection between doctors and patients and integrating into a wide range of medical equipment, modern device might completely change the way healthcare is provided. The efficiency and efficacy of healthcare systems in underdeveloped nations might be greatly enhanced by medical technology advancements rooted in artificial intelligence. Doctors in developing nations may now reach patients with chronic diseases like hypertension because to technological developments in tele monitoring (Shan et al., 2019).

PURPOSE OF THE STUDY

A research project with the working title "A Thorough Study of Medical Devices to Improve Health Technology Methodologies" is under progress. The purpose is to look at medical equipment and how they fit into current healthcare systems in great detail. The main goal of this study is to look at how beneficial, safe, and efficient technology is right now. Researchers have examined the extent of these technologies, along with their principal constraints and prospects. The declared purpose of this project is to find new methods to make medical devices easier to use and work better with digital health systems. The idea is to achieve this by really getting into the issue. The purpose of this project is to provide better clinical outcomes, more patient-centered solutions, and health technology that works better. Another purpose of the project is to change how healthcare legislation and rules are created in the future.

LITERATURE REVIEW

Medical devices are very important in modern medicine since they may help with diagnosing, monitoring, and treating a broad variety of health conditions. Over the years, advancements in technology have resulted in the creation of increasingly sophisticated electronic devices. Probes and blood pressure monitors are two examples of basic instruments that are accessible right now. Also, it's now easy to get transplanted atrial defibrillation devices and unmanned surgical equipment. There are many more instances that are already available to the public. These imaginative ideas have not only made healthcare operations more accurate and efficient, but they have also made patients happier and improved the outcomes of their treatments. The advent of electronic gadgets into medical supplies has brought about a major change in how medical treatment is given (Liu et al., 2020). Smart gadgets that can monitor, provide information, and undertake remote diagnostics in real time have made it feasible to employ these technologies to make healthcare more personalised and preventative. One example is the use of connected clothes, which has made it possible to keep an eye on vital signals all the time. This has made it possible to find problems earlier and provide the right kind of therapeutic treatment at the right time. The use of artificial intelligence and machine learning into diagnostic tools has enhanced the quality of decision-making. This progress has happened because these technologies have made assessments more accurate and have cut down on the number of errors people make (Bajwa et al., 2021). There are still difficulties with the design of medical

devices, how they are utilised, and the rules that the government has regarding them, even though there have been big steps forward. There are several reasons why it could be hard for individuals to utilise new technology well, such as worries about privacy, integrity, ease of use, and high costs. Additionally, the rapid pace at which new concepts are being created frequently makes it hard for regulators to keep up with them, which raises questions about the safety and dependability of these gadgets. There is also a growing requirement for strict clinical testing and long-term performance monitoring to make sure that medical devices still fulfil the criteria set by patients and the standards set by healthcare. Because of the global focus on evidence-based healthcare, it is now evident how crucial it is to get clinical feedback while developing and improving medical technology. This is another effect of the worldwide emphasis on evidence-based healthcare. Engineers, healthcare professionals, and end users must all be able to work together in order to make products that are not just new but also useful and simple to use every day. Devices need to function together to be able to be made. Putting the requirements of the patient first while designing is becoming more and more crucial. So, the ability to work for a wide range of people, the ease of use, and the comfort of the equipment are all important parts of good medical equipment (Dinh-Le et al., 2019).

RESEARCH QUESTION

What is the effect of accessibility in health technology methodologies?

RESEARCH METHODOLOGY

Research design

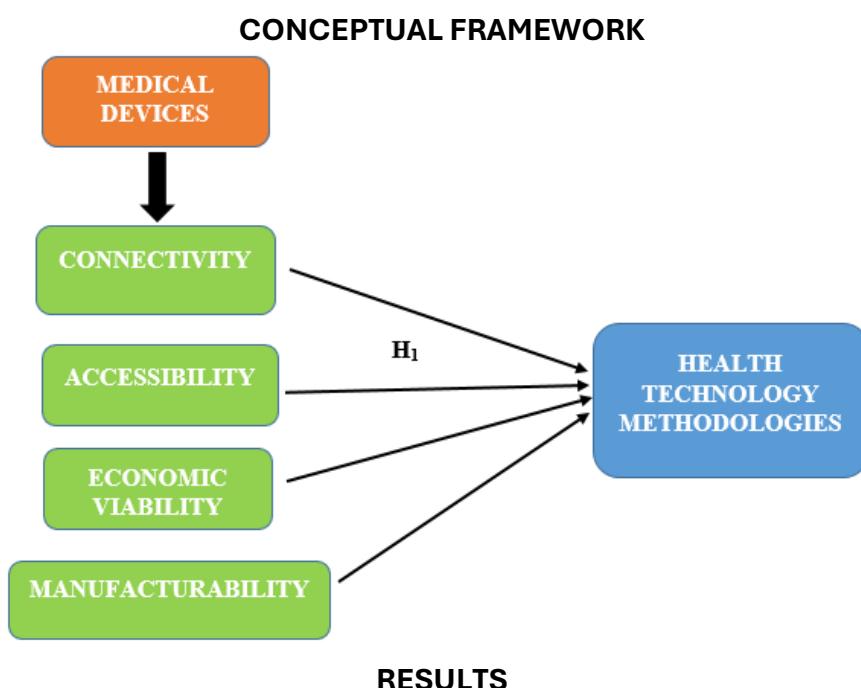
The quantitative data analysis was conducted with SPSS version 25. The odds ratio and 95% confidence interval were used to assess the magnitude and direction of the statistical link. The researchers set a statistically significant threshold of $p < 0.05$. A descriptive analysis was performed to identify the main elements of the data. Quantitative approaches are often used to evaluate data obtained from surveys, polls, and questionnaires, as well as data modified by computational tools for statistical analysis.

Sampling

The experiment used a simple sampling technique. The research used questionnaires to gather data. The Rao-soft program determined a sample size of 1263. A total of 1456 questionnaires were distributed; 1357 were collected, and 52 were rejected due to incompleteness. A total of 1305 questionnaires were used for the study.

Data and measurement

The primary source of information for the research was a questionnaire survey, conducted by one-to-one communication or a Google Form. The questionnaire had two independent sections: (A) demographic information collected from both online and offline sources, and (B)


responses to various traits evaluated using a 5-point Likert scale. Secondary data was sourced via several channels, mostly found online.

Statistical Software

Statistical analysis was performed with SPSS 25.

Statistical tools

A descriptive analysis was conducted to understand the data's underlying structure. A descriptive analysis was performed to understand the essential properties of the data. Validity was assessed by factor analysis and ANOVA.

Factor Analysis: A prevalent use of Factor Analysis (FA) is to validate the intrinsic component structure of a set of measurement items. Unobserved variables are believed to directly influence the scores of the assessed variables. Accuracy analysis (FA) is a method dependent on models. The primary objective of this study is to delineate causal relationships among visible occurrences, latent causes, and measurement inaccuracies. The Kaiser-Meyer-Olkin (KMO) Method may be used to assess the appropriateness of data for factor analysis. Researchers assess the adequacy of the sample for the overall model and for each specific variable. The statistical analysis quantifies the probable extent of common variation across many variables. Factor analysis is often better suitable for data sets with lower percentages.

KMO produces a value for integers ranging from 0 to 1. A KMO value ranging from 0.8 to 1 indicates a suitable sample. Should the KMO go below 0.6, indicating inadequate sampling, remedial actions must be undertaken? The range is 0.5 to 0.6, allowing researchers to use discretion; yet, some authors see 0.5 as definitive.

The researchers note that the partial correlations substantially surpass the overall correlations when the KMO nears 0. Pronounced correlations provide a considerable impediment to component analysis.

The subsequent factors used by Kaiser to evaluate acceptability are as follows: A negligible quantity ranging from 0.050 to 0.059. Substandard by 0.60 to 0.69

The usual range for middle school is 0.70 to 0.79 cm.

Ranging from a quality point value of 0.80 to 0.89. Notably, it varies from 0.90 to 1.00.

Table 1. KMO and Bartlett's Test.

KMO and Bartlett's Test		
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.930
Bartlett's Test of Sphericity	Approx. Chi-Square	3252.968
	df	190
	Sig.	.000

The importance of the correlation matrices was further validated by Bartlett's Test of Sphericity. The Kaiser-Meyer-Olkin metric of sampling adequacy is 0.930. Utilising Bartlett's sphericity test, researchers obtained a p-value of 0.00. The results of Bartlett's sphericity test indicated that the correlation matrix is erroneous.

INDEPENDENT VARIABLE

Medical Devices: Any substance, software, hardware, tool, or other thing that may be used for medical reasons, either alone or in combination (as the manufacturer specifies), is referred to as a medical device. Many different things fall under the umbrella term "medical device," including canes, walkers, eyeglasses, and breast implants. It is critical that individuals have access to affordable, appropriate health commodities in order to foster healthier communities, manage health emergencies, and provide universal health coverage. Without medical equipment, it would be difficult to bandage an ankle injury, diagnose HIV/AIDS, install a prosthetic hip, or execute any surgical surgery. In numerous settings, including at home, in distant clinics, for screening and prevention, and in palliative care, medical devices are used by healthcare professionals, opticians, dentists, paramedical staff, patients, and the general public. These healthcare technology innovations have the potential to improve the diagnosis, treatment, and monitoring of both acute and chronic disorders. These advances can also help those with disabilities. All throughout the world, people may currently buy almost two million different kinds of medical equipment, which fall into more than seven thousand different generic device categories. Medical devices may be defined as any product having an intended application in the medical field, whether used alone or in combination with other items. This

encompasses a wide range of products, including but not limited to software, materials, appliances, implants, and in vitro use reagents (Shen et al., 2021).

FACTOR

Accessibility: When trying to define and promote accessibility, it is essential to make a clear separation between the problem and the objective of accessible. Consider once again the discipline of architectural design as an example. When a wheelchair user encounters a curb, it becomes immediately apparent that there is a lack of access, or a limitation of some kind. It bears repeating that the wheelchair itself and the need of it are not the problem here. The curb is the problem, not you; you can go around just fine in a wheelchair. This distinction is seldom used in the subject of content accessibility, even though it's quite obvious. On the other side, for others, the problem lies not with poorly organised content or code but with a user's disability and the assistive technology they use. Instead of trying to create a magic bullet for persons with disabilities, designers, coders, and writers should prioritise respecting and supporting solutions and technologies that make alternative access feasible, rather than erecting hurdles to that use, in order to ensure equal access (Bohr & Memarzadeh, 2020).

DEPENDENT VARIABLE

Health Technology Methodologies: The term "health technologies" encompasses a wide range of tools and procedures used in the medical field, including medication, assistive devices, and medical equipment. These technologies are present in all types of healthcare facilities, play a crucial role in contemporary healthcare systems, and directly affect the quality of care that patients get. However, they should only be used in conjunction with well-trained personnel and well-organised health services. Using an interdisciplinary approach and defined processes, health technology methodology aims to determine the value of a health technology at different points in its existence. Our hope is that this data will help those in charge build a health care system that everyone can be proud of (Zhang et al., 2021).

Relationship between Accessibility and Health Technology Methodologies: It is vital to build a link between accessibility and health technology methods in order to ensure that newly developed medical technologies are equitable, accessible to all sorts of people, and useful to all persons. This can be only accomplished by establishing a connection between the two. The term "health technology methods" refers to the systematic procedures that are used in the process of developing, testing, and putting into practice various health technologies, such as medical equipment. When accessibility is included into these methods, it assures that the technologies that are generated as a consequence of them may be used by persons who have differing degrees of competence, unique experiences, and situations that are different from one another. It is vital to produce products that are user-friendly for persons who are not highly competent in technology, adaptive for individuals who have physical or cognitive disabilities, and economical for those who do not have a lot of money in order to accomplish this goal.

effectively. It is possible to improve patient-centered care, reduce health disparities, and promote increased utilisation of health technology approaches by incorporating accessibility into each and every stage of the process, beginning with user research and design and continuing through testing and implementation. This was accomplished by incorporating accessibility into each and every stage of the process. The concept of accessibility is not only a feature; rather, it is a basic principle that guides the development of technology in order to fulfil the requirements of all users in the actual world (Das & Pal, 2020).

Subsequent to the above debate, the researcher developed the following hypothesis, which analyses the link between accessibility and health technology methodologies.

“H₀₁: There is no significant relationship between Accessibility and Health Technology Methodologies.”

“H₁: There is a significant relationship between Accessibility and Health Technology Methodologies.”

Table 2. H1 ANOVA Test.

ANOVA					
Sum	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	39588.620	492	6387.847	1114.418	.000
Within Groups	492.770	812	5.732		
Total	40081.390	1304			

This investigation has been provided substantial results. The F statistic is 1114.418, attaining significance with a p-value of .000, which is below the .05 alpha threshold. The hypothesis *“H₁: There is a significant relationship between Accessibility and Health Technology Methodologies.”* is accepted, whereas the null hypothesis is denied.

DISCUSSION

It is essential to use innovative technology approaches in the field of healthcare for obstetric medical equipment in order to improve the standard of care that is provided to mothers and new-borns. In the process of developing goods, the findings of this research highlight how essential it is to include methodologies such as user-centred design and agile development wherever possible. The researcher will be able to establish the most effective methods to improve performance after they have a good understanding of these techniques. As part of the process, it was vital to engage in conversations with persons who represented a diverse range of interests and points of view. These individuals included patients, government regulators, healthcare providers, and information technology businesses. Taking their recommendations into consideration will enhance the possibility that the devices will function as intended and fulfil all of the criteria. It was very necessary to align the development processes with the official rules in order to ensure the success of the regulatory environment management programme. It was crucial to undertake this difficult but necessary move in order to expedite clearance

procedures and expand into new markets. This transition was needed even though it was arduous. Another significant topic that was brought up several times over the course of the presentation was the lightning-fast rate at which technical advancements are being made. Telemedicine, data analytics, and wearable gadgets are a few examples of the ways in which technology is significantly influencing the treatment of obstetric conditions.

CONCLUSION

The development of innovative approaches to health technology that are based on obstetric medical equipment is essential in order to achieve progress in the field of maternal healthcare. According to the findings, it is of the utmost importance to choose a strategy that enables the inclusion of user-centred design, agile development, and techniques that are built on actual information. If a wide variety of stakeholders are involved in the design process from the very beginning, it is conceivable that it will be easier to ensure that the final product fulfils both the requirements imposed by regulatory authorities and the needs of the actual world. This is because it will be much less difficult to guarantee that the completed product will satisfy both sets of criteria. As a result of this, they develop into ways that are both more efficient and secure. Because navigating the intricacies of regulatory systems continued to be a burden, it was vitally required to minimise the approval processes in order to comply with these criteria. This was done in order to ensure that the standards were met. It is necessary to enhance development processes in order to keep up with the advantages and challenges that are brought about by the exponential growth of technology. This is necessary in order to keep up with the expansion of technology. In addition to presenting possibilities, this growth has also presented restrictions. In order to achieve successful outcomes in the future, it will be essential important for experts working in the healthcare business, companies, and institutions to work together on a consistent basis. The availability of consistent support for education and infrastructure, which generates an atmosphere that is responsive to innovation, makes it easier to manufacture innovative obstetric medical equipment that significantly enhances the results of maternal healthcare. This environment is conducive to the development of new medical technologies.

REFERENCES

1. Sun L, Wong Y (2019) Personalized three-dimensional printed models in congenital heart disease. *J Clin Med* 8:522.
2. Shan R, Sarkar S, Martin SS (2019) Digital health technology and mobile devices for the management of diabetes mellitus: state of the art. *Diabetologia* 62:877–887.
3. Dinh-Le C, Chuang R, Chokshi S, Mann D (2019) Wearable health technology and electronic health record integration: scoping review and future directions. *JMIR MHealth UHealth* 7:e12861.
4. Shen Y-T, Chen L, Yue W-W, Xu H-X (2021) Digital technology-based telemedicine for the COVID-19 pandemic. *Front Med* 8:646506.

5. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Artificial Intelligence in Healthcare. Cambridge, MA. Academic Press; 2020.
6. Zhang H, Lowe A, Kalra A, Yu Y (2021) A flexible strain sensor based on embedded ionic liquid. *Sensors* 21:5760.
7. Das S, Pal M (2020) Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. *J Electrochem Soc* 167:037562.
8. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. *Future Healthc J*. Jul 2021;8(2):e188-e194.
9. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. *Nat Med*. Sep 2020;26(9):1364-1374.
10. Chen Y. Health technology assessment and economic evaluation: is it applicable for the traditional medicine? *Integr Med Res*. Mar 2022;11(1):100756.