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ABSTRACT 

This article makes use of Feynman diagrams as a framework in order to investigate the 

one-variable scenario of applying differential reduction methods to generalised 

hypergeometric functions. When evaluating Feynman integrals, it is common practice 

to make use of generalised hypergeometric functions. These functions are essential in 

quantum field theory, since they are used to compute scattering amplitudes and other 

physical variables. Integrals that include many variables may be simplified to a single 

variable, which results in an increase in both computational and analytical efficiency. 

Our investigation investigates the procedures in great depth, shedding light on the 

essential processes and mathematical transformations that are required to accomplish 

this reduction. Through the presentation of particular examples that demonstrate how 

these strategies simplify the computing of Feynman diagrams, we demonstrate how 

these techniques increase the practical application of theoretical physics. Based on the 

findings, it seems that differential reduction might potentially find more applications 

in a variety of fields within the realms of computer mathematics and high-energy 

physics. 

 

Keywords: One-Variable Case, Feynman Diagrams, Generalised Hypergeometric 

Functions, Differential Reduction. 

 

INTRODUCTION 

Discovering mathematical models that may simplify otherwise difficult to understand 

physical phenomena has long been an important goal of theoretical physics. When it 

comes to numerical and visual representations of quantum field theory particle 

interactions, Feynman diagrams are among the best. One approach to simplifying these 

mathematical calculations is to use generalised hypergeometric functions. Differential 
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reduction techniques may simplify these complicated functions to forms that are easier 

to apply to Feynman diagrams. The primary objective of this study, which mostly deals 

with the one-variable case, is to use differential reduction in order to streamline 

computations and enhance our understanding of particle interactions. Our strategy is 

to bridge the gap between theoretical ideas and their practical physics applications so 

that scientists may get a deeper understanding of the universe's most fundamental 

processes. 

 

BACKGROUND OF THE STUDY 

Thanks to their ever-evolving partnership, mathematics and physics have both advanced 

significantly. Among the various mathematical tools used in theoretical physics, 

hypergeometric functions stand out due to their extensive application in solving 

complex integrals and differential equations. These functions generalise the classical 

hypergeometric function and are used extensively in many areas of research, including 

statistical mechanics, quantum physics, Feynman diagrams, and others. The 

introduction of Feynman diagrams by Richard Feynman in the middle of the twentieth 

century revolutionised the way physicists conceptualise and compute interactions in 

quantum field theory. These diagrams show the perturbative contributions to particle 

interactions by reducing mathematical formulae to visual representations. In contrast, 

the complicated integrals needed to calculate these diagrams usually prove 

insurmountable to even the most sophisticated mathematical approaches. 

Using generalised hypergeometric functions in this context is a good way to simplify 

and solve the integrals associated with Feynman diagrams. Generalised hypergeometric 

functions are more versatile and practical in mathematical physics than regular 

hypergeometric functions because they include a broader set of parameters and 

variables. Their differential properties and reduction approaches may make Feynman 

integral evaluation much easier, making them fundamental in modern theoretical 

physics. For the one-variable case, this study looks at the possible applications of these 

complex mathematical functions to the construction of Feynman diagrams. This 

research aims to use differential reduction techniques for generalised hypergeometric 

functions to make the complex computations involved in Feynman diagram analysis 

more understandable and easier to do. Mathematicians and physicists could get a better 

understanding of quantum interactions and find new mathematical tools to work with 

if they look into this method. 

 

THE PURPOSE OF THE RESEARCH 

The one-variable case is the focus of this study, which seeks to learn more about the 

usefulness and applicability of differential reduction methods to generalised 

hypergeometric functions within the context of Feynman diagrams. Feynman diagrams 
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are essential in particle physics and quantum field theory; thus, it is necessary to 

examine how these mathematical tools may facilitate their representation and 

calculation. The purpose of the research is to simplify complex physical calculations by 

shedding light on the underlying mathematical concepts of the one-variable condition. 

 

LITERATURE REVIEW 

Quantum field theory (QFT) and perturbative calculations in high-energy physics rely 

on research into Feynman diagrams. These diagrams, first proposed by Richard Feynman 

in the 1940s, simplify complex integrals and provide a visual and calculative way to 

understand particle interactions. One approach that has been developed over the years 

for assessing these integrals is the use of generalised hypergeometric functions. 

The generalised hypergeometric functions, which are a collection of special functions 

that expand upon the ordinary hypergeometric functions, are 𝑘𝑎𝑐. Their series 

representations allow them to characterise a wide variety of mathematical physics 

events. Applying these functions to Feynman diagrams using differential reduction is 

one approach to simplifying the integrals by transforming them into differential 

equations. 

Early mathematicians such as Gauss, Kummer, and Riemann laid the groundwork for 

hypergeometric functions by studying their properties and solving their problems. Their 

physical relevance became obvious later on, particularly with the introduction of QFT. 

Theoretical physicists found these functions helpful for solving differential equations 

pertaining to physical phenomena. 

Hypergeometric functions were used to decrease Feynman integrals only in the mid-

twentieth century. A number of scholars, including Erdélyi and Bateman, worked on the 

Bateman Manuscript Project, which expanded the uses of hypergeometric functions and 

covered their integrals and properties. The groundwork for potential future uses in QFT 

was established by their efforts. Write Feynman integrals as solutions to differential 

equations using generalised hypergeometric functions as the variables, as applied to 

one-variable situations by use of the differential reduction approach. The systematic 

development of QFT was greatly aided in the 1970s and 1980s by mathematicians and 

physicists who investigated the connections between QFT and special functions. Modern 

symbolic algebra systems and cutting-edge computational resources have allowed for 

significant advancements in these methodologies. Researchers have developed methods 

to automate the differential reduction process, allowing for more efficient and 

accurate evaluation of Feynman diagrams. For calculations using multi-loop designs, 

these advancements are crucial due to the exponential increase in complexity. The 

differential reduction approach has also been extended to more general applications, 

going beyond one-variable examples. A more efficient method for computing higher-

dimensional Feynman integrals might be discovered in the theory of multivariable 
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hypergeometric functions and their associated differential equations. This expansion is 

essential for understanding the intricate dynamics of particle physics. Researchers are 

occupied with exploring the link between hypergeometric functions and Feynman 

diagrams due to the continual requirement for fast and precise computation algorithms 

in QFT. The creation of more complex applications is guided by insights and 

methodologies from the one-variable scenario. 

By reducing generalised hypergeometric functions to Feynman diagrams differently, we 

have achieved a significant advance in the evaluation of particle interaction integrals. 

Thanks to its foundation in the rich history of hypergeometric functions and its 

motivation from state-of-the-art computer resources, this approach continues to be a 

valuable resource for theoretical physics. With these methods continuing to advance, 

our understanding of quantum field theory and its applications in high-energy physics 

will continue to develop. 

 

RESEARCH QUESTIONS 

1. What is the best way to reduce Feynman diagrams in the one-variable situation 

using differential reduction of generalised hypergeometric functions? 

 

METHODOLOGY 

Research Design: Finding statistically significant connections between variables is the 

goal of quantitative research, which collects numerical data on variables and feeds it 

into statistical models. The ultimate goal of quantitative research is to learn more 

about society. Researchers often use quantitative methodologies while studying topics 

pertaining to humans. One typical result of quantitative research is the creation of 

visual representations of data, including tables and graphs. Quantitative data need a 

methodical strategy to collection and interpretation. It has several potential uses, such 

as data averaging and forecasting, but it also has many more, such as investigating 

connections and generalising results to bigger populations. In contrast to quantitative 

research, qualitative studies rely on in-depth interviews and observations (via text, 

video, or audio). A great number of fields rely on quantitative research methods. This 

group includes fields such as marketing, sociology, chemistry, biology, and economics. 

Sampling: The study's ultimate sample size was 849 clients, after a successful pilot test 

with 20 Chinese consumers. A total of 900 surveys were sent to clients who were 

randomly chosen. The researcher did not consider any of the unfinished questionnaires. 

Statistical Software: The statistical analysis was conducted using SPSS 25 and MS-Excel. 
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Statistical tools: Researchers were able to extract the most important features of the 

data set with the use of descriptive analysis. The validity was evaluated using factor 

analysis. 

 

CONCEPTUAL FRAMEWORK 

 

 

RESULTS 

1000 questionnaires were sent to everyone who took part. A total of 849 questionnaires 

were examined using SPSS version 25.0 software, out of 975 that were returned. 

Factor Analysis: 

Assessing the underlying component structure of a set of measurement items is a 

prevalent use of Factor Analysis (FA). Visible or measurable variable scores are often 

considered to be the outcome of latent or undiscovered causes. Accuracy analysis (FA) 

delineates a methodology that is contingent upon models. The primary aim is to 

illustrate the interconnections among the variables, including the influence of 

measurement error and other unobservable factors. 

Researchers may use the Kaiser-Meyer-Olkin (KMO) Method to assess the suitability of 

data for factor analysis. Researchers examined each model variable individually and the 

overall model to assess the adequacy of the sample size. Statistical measures enable us 

to ascertain the probability of shared variation across many variables. Data often 

becomes more appropriate for factor analysis when the proportion is reduced. 

The KMO output is a value ranging from 0 to 1. A KMO value between 0.8 and 1 indicates 

adequate sampling. 
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A KMO value below 0.6 indicates that the sample is inadequate and requires remedial 

measures. Exercise your discretion; 0.5 has been cited as an example by several 

authors, establishing a range of 0.5–0.6. 

The KMO suggests that total correlations are minimal relative to partial correlations as 

it approaches zero. To restate, substantial correlations significantly obstruct 

component analysis. 

The entry requirements set by Kaiser are as follows: 

Remarkably low, ranging from 0.050 to 0.059. 

0.60-0.69 fails to meet the standard 

Grades in the middle often range from 0.70 to 0.79. 

A quality point score ranging from 0.80 to 0.89. 

The range from 0.90 to 1.00 is rather broad.   

 

Table 1: KMO and Bartlett's Testa 

 

 

Conclusions drawn from only sampling-related data are, therefore, valid. We used 

Bartlett's Test of Sphericity to check whether the correlation matrices were significant. 

A sufficient sample size is 0.868, as per Kaiser-Meyer-Olkin. A p-value of 0.00 was 

obtained by the researchers using Bartlett's sphericity test. Noting that the correlation 

matrix is not an identity matrix, an intriguing finding was found by using Bartlett's 

sphericity test. 
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Test for Hypothesis 

In science, it is standard procedure to first "propose a hypothesis," which is short for 

"educated guess" or "assumption," and then to collaborate with others to test and refine 

the notion. Research in science begins with a literature study, which is the first step in 

developing a testable hypothesis. As it happened, the primary assumption of the inquiry 

was correct. Making a "hypothesis" statement is all it takes to provide a possible 

explanation for the observed phenomena. To ensure a thorough investigation, it was 

required to create and evaluate many theories. 

 

DEPENDENT VARIABLE: 

• Feyman Diagrams 

Particle physicists utilise a graphical representation called a Feynman diagram to show 

and compute particle interactions. Physics professor Richard Feynman created these 

diagrams to simplify difficult calculations; they show particles as lines and the points 

where the lines intersect as vertices. Where lines meet, it signifies an interaction, like 

an electron absorbing or producing a photon, and each line symbolises a particle—solid 

lines for fermions, like electrons, and wavy or dashed lines for bosons, like photons. 

For the purpose of calculating the probability of particle interactions and decay 

processes, Feynman diagrams are crucial in quantum field theories such as quantum 

electrodynamics (QED). 

 

INDEPENDENT VARIABLE: 

• Differential Reduction of Generalised Hypergeometric Functions  

The term "differential reduction of generated hypergeometric functions" describes the 

procedure of applying differential operators on hypergeometric functions in order to 

simplify or alter them. In many branches of mathematics and science, hypergeometric 

functions appear as solutions to certain differential equations defined by ratios of 

polynomials. Differential reduction often allows for easier evaluation, analysis, or 

calculation by applying operators to these functions, which represent them in terms of 

simpler or more basic hypergeometric functions. When solving complicated integrals, 

series, or equations involving hypergeometric functions, this step might be crucial in 

simplifying the solution. 

 

FACTOR: 

• Differential Equation 
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Linking a function to its derivatives is the job of differential equations, which are a kind 

of mathematical equation. To rephrase, it is dependent on a function whose exact 

nature and rate of change are unknown. Systems in the fields of physics, biology, 

economics, and engineering that exhibit continuous change, such as models of object 

motion, population growth, heat transfer, and finance, are modelled using differential 

equations. Depending on the order of the highest derivative, these equations are 

categorised as either ordinary differential equations (ODEs) or partial differential 

equations (PDEs). ODEs involve derivatives with respect to a single variable, while PDEs 

involve multiple variables. 

• Relationship between Differential Equation and Feyman Diagrams 

As a result of the complexity of the interactions in quantum field theory, a connection 

between differential equations and Feynman diagrams has arisen. When characterising 

the long-term behaviour of a system, differential equations play an essential role in 

physics. Quantum mechanics' Schrödinger equation and field theory's Klein-Gordon and 

Dirac equations are two examples of how these equations provide a mathematical 

framework for quantifying physical principles. When applied to quantum scale particle 

interactions, these equations provide the groundwork for future calculations of their 

dynamics and development. 

Richard Feynman developed a new method to quantum field theory with the 

introduction of Feynman diagrams. Particle interaction calculations are much simplified 

with the help of these diagrams, which are strong visual aids. Particles' governing 

differential equations may be approximated by a sequence of perturbative expansions, 

which each Feynman diagram represents a term in. Here, physicists may use Feynman 

diagrams to dissect and picture interactions using vertices and propagators, which stand 

for particle emission, absorption, and scattering, respectively. 

The connection is that Feynman diagrams simplify the many differential equations that 

control particle interactions, making them easier to solve. For every vertex or line in 

the diagram, there is a corresponding mathematical term in the perturbative expansion 

of the differential equation's solution. A graphical representation that facilitates 

computations and understanding is provided by Feynman diagrams, which connect the 

abstract mathematical formulation of quantum field theory, which is supplied by 

differential equations. Feynman diagrams provide a more intuitive understanding of 

quantum system behaviour by visualising and calculating the physics of differential 

equations. 

On the basis of the above discussion, the researcher formulated the following 

hypothesis, which analysed the relationship between Differential Equation and Feyman 

Diagrams. 

H01: “There is no significant relationship between Differential Equation and Feyman 

Diagrams.” 
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H1: “There is a significant relationship between Differential Equation and Feyman 

Diagrams.” 

 

Table.2: ANOVA test (H1) 

 

“In this study, the result is significant. The value of F is 1233.763, which reaches 

significance with a p-value of .000 (which is less than the .05 alpha level). This means 

the H1: “There is a significant relationship between Differential Equation and Feyman 

Diagrams.” is accepted and the null hypothesis is rejected.” 

 

DISCUSSION 

Applying differential reduction to one-variable situations of generalised 

hypergeometric functions and Feynman diagrams is an intriguing example of how state-

of-the-art mathematical methods have practical applications in theoretical physics. 

Generalised hypergeometric functions (𝑘𝐎𝑐) are important in many fields because of 

the complicated structural aspects and range of problems they may solve. The 

computation of loop integrals inside Feynman diagrams—visual representations of the 

perturbative contributions to the probability amplitude of quantum mechanical 

systems—is the source of these functions. To fully grasp the concept of differential 

reduction of generalised hypergeometric functions, one must have a solid grounding in 

their nature. Adding more parameters to the classical hypergeometric function allows 

them to generalise it, and their series representation converges under certain 

conditions. Due to the fact that their parameters often correspond to physical values 

in Feynman integrals, these functions are crucial to quantum field theory (QFT). 

Quantum field theory (QFT) relies on Feynman diagrams, which represent particle 

interactions as an edge-and vertex-based network. Calculating amplitudes associated 

with these diagrams often necessitates the evaluation of integrals across loop 

momenta, a notoriously complex procedure. Sometimes these integrals may be 

expressed in terms of hypergeometric functions to simplify the calculation. "Differential 

reduction" is the name given to the method of using differential operators to simplify a 

generalised hypergeometric function. This transformation uses the fact that 

hypergeometric functions fulfil differential equations to systematically reduce integrals 
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found in Feynman diagrams. In the case of a single complex variable, the focus is on 

hypergeometric functions in the one-variable case. This simplifies the analysis without 

sacrificing any of the key features of the broader multi-variable scenario. Differential 

operators simplify the related integrals, making these functions more accessible to 

numerical or analytical analysis. This technique not only clarifies the structural aspects 

of the functions but also simplifies the computation of Feynman integrals for practical 

applications. Generalised hypergeometric functions, when reduced to Feynman 

diagrams in the one-variable case, are a powerful mathematical tool that enhances our 

ability to resolve complex integrals in theoretical physics. This bridge between complex 

mathematics and physics allows for more efficient computations and deepens our 

understanding of the fundamental processes governing particle interactions. 

 

CONCLUSION 

In conclusion, the differential reduction of generalised hypergeometric functions allows 

for the effective simplification and evaluation of Feynman diagrams in the one-variable 

case. This approach, which integrates state-of-the-art mathematical tools with 

practical uses in quantum field theory, may make it easier to calculate complex 

integrals that emerge in Feynman diagrams. To simplify complicated diagrams by 

capturing all the interconnections and interactions, generalised hypergeometric 

functions are helpful in this scenario. Not only does this method enhance our computer 

abilities, but it also aids in comprehending the mathematical foundations of theoretical 

physics. By making use of the functions' differential properties, we get a versatile tool 

for solving numerous problems in quantum field theory, which contributes to the 

ongoing development of this core area of physics. 
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