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ABSTRACT 

Using Feynman diagrams as a framework, this study investigates the one-variable 

scenario of applying differential reduction methods to generalised hypergeometric 

functions. An essential part of quantum field theory for computing scattering 

amplitudes and other physical variables are generalised hypergeometric functions, 

which are used often in the assessment of Feynman integrals. Reduced integrals provide 

for more efficient computing and analytical investigation by simplifying multivariable 

integrals into one-variable forms. Our investigation delves deep into the strategies used 

to accomplish this reduction, shedding light on crucial stages and mathematical 

transformations. By providing concrete instances, we show how these methods 

streamline the calculation of Feynman diagrams, which in turn advances the real-world 

relevance of theoretical physics. Based on the findings, differential reduction might be 

used more widely in several branches of computer mathematics and high-energy 

physics. 

 

Keywords: One-Variable Case, Feynman Diagrams, Generalised Hypergeometric 

Functions, Differential Reduction. 

 

INTRODUCTION 

An essential part of theoretical physics has been the search for mathematical models 

that may explain complicated physical events in a simpler way. Feynman diagrams are 

one of the most effective frameworks for quantum field theory particle interactions, 

both visually and numerically. Applying generalised hypergeometric functions is one way 

to reduce the complexity of these computations in mathematics. These complex 

functions may be reduced to more comprehensible forms using differential reduction 

methods, which allows them to be applied to Feynman diagrams more easily. Applying 
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differential reductions to simplify calculations and improve our knowledge of particle 

interactions is the main goal of this work, which mostly addresses the one-variable 

scenario. Our goal in taking this approach is to help scientists better understand and 

analyse the most basic processes in the universe by connecting theoretical concepts 

with real-world applications in physics. 

 

BACKGROUND OF THE STUDY 

Both mathematics and physics have benefited much from the dynamic relationship 

between the two disciplines. Because of their widespread use in solving complicated 

integrals and differential equations, hypergeometric functions have distinguished 

themselves among the many mathematical tools used in theoretical physics. The study 

of Feynman diagrams, statistical mechanics, quantum mechanics, and other fields rely 

heavily on these functions, which generalise the classical hypergeometric function. 

Midway through the twentieth century, Richard Feynman introduced the world to 

Feynman diagrams, which have since transformed how physicists think about and 

calculate interactions in quantum field theory. By simplifying mathematical formulas 

into pictorial representations, these diagrams illustrate the perturbative contributions 

to particle interactions. On the other hand, even the most advanced mathematical 

methods typically fail when faced with the complex integrals required to compute these 

diagrams. 

An effective strategy for simplifying and solving the integrals linked to Feynman 

diagrams is the use of generalised hypergeometric functions in this setting. The 

flexibility and usefulness of generalised hypergeometric functions in mathematical 

physics are increased since they include a larger range of parameters and variables than 

typical hypergeometric functions. They are crucial in contemporary theoretical physics 

due to the fact that their reduction methods and differential characteristics may 

greatly simplify the assessment of Feynman integrals. This research investigates, for 

the one-variable situation in particular, how these sophisticated mathematical 

functions might be applied to the structure of Feynman diagrams. This study seeks to 

clarify and simplify the complicated calculations in Feynman diagram analysis by using 

the differential reduction methods of generalised hypergeometric functions. Physicists 

and mathematicians may benefit from a deeper knowledge of quantum interactions and 

from expanding their mathematical toolbox via the investigation of this technique. 

 

THE PURPOSE OF THE RESEARCH 

This research aims to investigate, for the one-variable situation in particular, the 

relevance and utility of differential reduction techniques applied to generalised 

hypergeometric functions in the framework of Feynman diagrams. This requires looking 

at how these mathematical tools may make the representation and computation of 
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Feynman diagrams easier, which are fundamental in particle physics and quantum field 

theory. The study's goal is to provide light on the mathematical principles that underlie 

the one-variable situation so that complicated physical calculations may be simplified. 

 

LITERATURE REVIEW 

Research into Feynman diagrams is essential to perturbative calculations in high-energy 

physics and quantum field theory (QFT). Presented by Richard Feynman in the 1940s, 

these diagrams provide a visual and calculative means of comprehending particle 

interactions, simplifying intricate integrals. The usage of generalised hypergeometric 

functions is one of the methods that have been devised throughout the years for 

evaluating these integrals. 

A wide set of special functions that generalise the ordinary hypergeometric functions 

are generalised hypergeometric functions, abbreviated as 𝑘𝐶𝑐. They are able to 

characterise a vast array of mathematical physics phenomena and are characterised by 

series representations. One way to simplify the integrals by turning them into 

differential equations is to apply these functions to Feynman diagrams using differential 

reduction. 

Gauss, Kummer, and Riemann were among the early mathematicians whose works 

established the basics of hypergeometric functions by analysing their characteristics 

and finding solutions to them. Later on, especially with the introduction of QFT, their 

physical significance became apparent. These functions were useful in theoretical 

physics because they could solve physical-related differential equations. 

It wasn't until the middle of the twentieth century that hypergeometric functions were 

used to reduce Feynman integrals. Erdélyi and Bateman were among the researchers 

who contributed to the Bateman Manuscript Project, which included integrals and 

characteristics of hypergeometric functions, and who furthered the function's 

applications. The foundation for future applications in QFT was laid by their work. The 

differential reduction method, as applied to one-variable scenarios, is to write Feynman 

integrals as solutions to differential equations using generalised hypergeometric 

functions as the variables. Mathematicians and physicists who studied the relationships 

between QFT and special functions made substantial contributions to the method's 

methodical development in the 1970s and 1980s. Through the use of state-of-the-art 

computer resources and symbolic algebra systems, these methods have recently been 

improved upon. In order to evaluate Feynman diagrams more efficiently and accurately, 

researchers have created algorithms to automate the differential reduction process. 

Because of the exponential growth in complexity, these developments are of the utmost 

importance for computations requiring multi-loop diagrams. Additionally, beyond one-

variable instances, the differential reduction technique has been expanded to more 

generic applications. An improved approach to solving Feynman integrals in higher 
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dimensions may be found in the theory of multivariable hypergeometric functions and 

the differential equations that go along with them. Complex interactions in particle 

physics cannot be understood without this extension. The constant need for quick and 

accurate computing techniques in QFT keeps researchers busy studying the relationship 

between hypergeometric functions and Feynman diagrams. Insights and methods from 

the one-variable scenario guide the development of increasingly advanced applications. 

Overall, a major step forward in the assessment of particle interaction integrals has 

been made by differentially reducing generalised hypergeometric functions to Feynman 

diagrams. This method is still an important tool for theoretical physics, as it is based 

on the long history of hypergeometric functions and is driven by current computing 

tools. Our knowledge of quantum field theory and its uses in high-energy physics stands 

to benefit from these approaches' ongoing growth and improvement. 

 

RESEARCH QUESTIONS 

1. What is the best way to reduce Feynman diagrams in the one-variable situation 

using differential reduction of generalised hypergeometric functions? 

 

METHODOLOGY 

Research Design: By gathering numerical data on variables and feeding them into 

statistical models, quantitative research aims to discover statistically significant 

correlations between variables. Quantitative study ultimately aims to get a greater 

knowledge of society. Concerning human-related subjects, quantitative methods are 

often used by researchers. Visual representations of data, such tables and graphs, are 

common outcomes of quantitative research. Collecting and interpreting numerical 

information requires a systematic approach when dealing with quantitative data. Data 

averaging and forecasting are only a few of its many possible applications; others 

include studying relationships and expanding findings to larger populations. Qualitative 

studies, on the other hand, depend on in-depth interviews and observations (via text, 

video, or audio) and are therefore diametrically opposed to quantitative research. 

Quantitative research techniques are used in many academic disciplines. Economics, 

sociology, chemistry, biology, and marketing are all part of this category. 

Sampling: After a successful pilot test with 20 Chinese consumers, the study was 

conducted with a final sample of 849 customers. Clients were selected at random and 

received a total of 900 questionnaires. None of the incomplete surveys were taken into 

account by the researcher. 

Statistical Software: The statistical analysis was conducted using SPSS 25 and MS-Excel. 
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Statistical tools: The descriptive analysis helped the researchers to identify the core 

characteristics of the data. Factor analysis was used to assess validity. 

 

CONCEPTUAL FRAMEWORK 

 

 

 

RESULTS 

There were 1000 questionnaires sent to the participants in all. Out of 975 surveys that 

were returned, 849 were evaluated using the Statistical Package for the Social Sciences 

(SPSS) version 25.0software. 

• Factor Analysis 

Verifying the latent component structure of a collection of measurement items is a 

common use of Factor Analysis (FA). It is often thought that the observable or measured 

variable scores are the result of latent (or unknown) causes. Accuracy analysis (FA) 

describes this method that relies on models. The main objective is to depict the 

interrelationships of the variables, taking into account the impact of measurement 

error and other factors that cannot be seen. 

To determine whether data is appropriate for factor analysis, researchers might use the 

Kaiser-Meyer-Olkin (KMO) Method. Researchers looked at each model variable 

separately and the model as a whole to see whether sample size was enough. With the 

use of statistical measurements, we may determine the likelihood of a shared variance 

across several variables. It is common for data to become more suitable for factor 

analysis as the percentage is decreased. 
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The output from KMO is a number between 0 and 1. If the KMO number is between 0.8 

and 1, it means that the sampling was sufficient. 

If the KMO is less than 0.6, it means that the sample was insufficient and corrective 

action is needed. You may use your best judgement here; 0.5 has been used as an 

example by various writers, thus the range is 0.5–0.6. 

The KMO indicates that the total correlations are small in comparison to the partial 

correlations if it's around zero. To reiterate, significant correlations significantly 

impede component analysis. 

The standards that Kaiser has established for admission are as follows: 

The standards that Kaiser has established for admission are as follows: 

Extremely low, ranging from 0.050 to 0.059. 

0.60-0.69 is not up to standard 

Grades in the middle often range from 0.70 to 0.79. 

Having a quality point score between 0.80 and 0.89. 

The range from 0.90 to 1.00 is quite wide.   

 

Table 1: KMO and Bartlett's Testa 

 

Claims made only for sampling are therefore legitimate. To make sure the correlation 

matrices were relevant, we ran them via Bartlett's Test of Sphericity. According to 

Kaiser-Meyer-Olkin, an adequate sample size is 0.868. The researchers used Bartlett's 

sphericity test and got a p-value of 0.00. An interesting discovery was made when 

Bartlett's sphericity test revealed that the correlation matrix is not an identity matrix. 
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Test for Hypothesis 

It is common practice for scientific groups to "propose a hypothesis," or educated guess 

or assumption, before discussing the idea with peers and doing research to confirm or 

refute it. In order to formulate a testable hypothesis, the first stage in doing scientific 

research is to review the relevant literature. It turned out that the investigation's main 

premise was right. Providing a potential explanation for the observed phenomenon is 

as simple as making a "hypothesis" statement. It was necessary to formulate and test 

several hypotheses for the inquiry to be comprehensive. 

 

DEPENDENT VARIABLE: 

• Feyman Diagrams 

A Feynman diagram is a useful tool for particle physicists to depict and calculate 

particle interactions. These schematics, drawn by physicist Richard Feynman to simplify 

complex computations, depict particles as lines with their intersections represented as 

vertices. The intersection of two lines represents an interaction, such as an electron 

absorbing or creating a photon. The lines themselves represent particles, with solid 

lines representing fermions (such as electrons) and wavy or dashed lines representing 

bosons (such as photons). In quantum field theories like QED, Feynman diagrams are 

essential for determining the likelihood of particle interactions and decay processes. 

 

INDEPENDENT VARIABLE: 

• Differential Reduction of Generalised Hypergeometric Functions  

"Differential reduction of generated hypergeometric functions" is the way 

hypergeometric functions are simplified or changed by applying differential operators 

to them. As solutions to certain differential equations specified by ratios of 

polynomials, hypergeometric functions arise in several areas of mathematics and 

science. By applying operators to these functions, which are represented in terms of 

simpler or more fundamental hypergeometric functions, differential reduction often 

enables quicker evaluation, analysis, or computation. The simplification of solutions to 

complex integrals, series, or equations involving hypergeometric functions may depend 

on this step. 

 

FACTOR: 

• Reduction Process’s Ability 

The "reduction process's ability" refers to how well and efficiently a given process can 

simplify or reduce a system to its target state. Reduced numbers, simplified complexity, 
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or reduced use of certain components, elements, or resources are all aspects of this 

capability. The degree to which a process can achieve reduction objectives is reflected 

by this term, which has applications in manufacturing, data processing, environmental 

management, and efficiency optimisation. The capacity to achieve reductions that are 

in line with the desired goals in a sustainable, accurate, and consistent manner is 

essential for enhancing performance, saving resources, decreasing costs, and 

minimising waste. 

• Relationship between Reduction Process’s Ability and Feyman Diagrams 

How Feynman diagrams may reduce and visualise the complicated interactions and 

transformations in particle physics is what the "relationship between reduction process's 

ability and Feynman diagrams" is alluding to. Quantum field theory makes use of 

Feynman diagrams to illustrate decay, scattering, and particle interactions. 

Understanding and interpreting interaction probabilities, particle behaviour, and energy 

transfers within a process becomes much simpler with the help of these diagrams, which 

effectively provide a visual simplification of mathematical computations. To make the 

complicated algebraic equations needed to depict interactions understandable, the 

"reduction process's ability" in this setting emphasises the function of the diagrams. 

On the basis of the above discussion, the researcher formulated the following 

hypothesis, which analysed the relationship between Creative Industries and Classroom 

Instruction. 

H01: “There is no significant relationship between Reduction Process’s Ability and 

Feyman Diagrams.” 

H1: “There is a significant relationship between Reduction Process’s Ability and Feyman 

Diagrams.” 

 

Table.2: ANOVA test (H1) 

 

“In this study, the result is significant. The value of F is 1233.763, which reaches 

significance with a p-value of .000 (which is less than the .05 alpha level). This means 

the H1: “There is a significant relationship between Reduction Process’s Ability and 

Feyman Diagrams” is accepted and the null hypothesis is rejected.” 
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DISCUSSION 

This fascinating subject combines cutting-edge mathematical techniques with real-

world applications in theoretical physics: the application of differential reduction to 

one-variable cases of generalised hypergeometric functions and Feynman diagrams. The 

complex structural features and variety of issues that generalised hypergeometric 

functions (𝑘𝐶𝑐) may address make them significant in numerous domains. These 

functions originate from the calculation of loop integrals within the framework of 

Feynman diagrams, which are visual depictions of the perturbative contributions to the 

probability amplitude of quantum mechanical systems. A thorough understanding of the 

nature of generalised hypergeometric functions is necessary for comprehending their 

differential reduction. They have a series representation that converges under specified 

circumstances and generalise the classical hypergeometric function by introducing 

extra parameters. Quantum field theory (QFT) relies heavily on these functions because 

their parameters commonly match physical values in Feynman integrals. Fundamental 

to quantum field theory (QFT) are Feynman diagrams, which depict particle interactions 

as a network of vertices and edges. Evaluating integrals over loop momenta, a famously 

complicated operation, is often required for the calculation of amplitudes linked to 

these diagrams. Simplifying the computation procedure, these integrals may sometimes 

be written in terms of hypergeometric functions. The term "differential reduction" 

describes the process of simplifying a generalised hypergeometric function by applying 

differential operators to it. In order to simplify integrals seen in Feynman diagrams in 

a systematic way, this transformation takes use of the fact that hypergeometric 

functions satisfy differential equations. When dealing with a single complex variable, 

the emphasis is on hypergeometric functions in the one-variable situation. Even while 

this streamlines the analysis, it captures all the important aspects of the more general 

multi-variable case. These functions may be made more amenable to analytical or 

numerical treatment by using differential operators, which simplify the corresponding 

integrals. Not only does this method simplify the calculation of Feynman integrals for 

practical applications, but it also sheds light on the underlying structural features of 

the functions. In sum, a strong mathematical tool that improves our capacity to resolve 

complicated integrals in theoretical physics is the differential reduction of generalised 

hypergeometric functions to Feynman diagrams in the one-variable case. More efficient 

calculations are made possible by this link between sophisticated mathematics and 

physics, which also improves our knowledge of the basic mechanisms controlling 

particle interactions. 

 

CONCLUSION 

To sum up, Feynman diagrams in the one-variable situation may be effectively 

simplified and evaluated using the differential reduction of generalised hypergeometric 

functions. Complex integrals arising in Feynman diagrams may be more easily computed 

using this method, which combines cutting-edge mathematical methods with real-world 
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applications in quantum field theory. In this case, generalised hypergeometric functions 

are useful because they can simplify complex diagrams by encapsulating all of the 

interdependencies and interactions. In addition to improving our computing skills, this 

technique helps us better grasp the mathematical structures at the heart of theoretical 

physics. Utilising the differential characteristics of these functions provides us a flexible 

instrument for dealing with various issues in quantum field theory, so adding to the 

continuous advancement of this fundamental branch of physics. 
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