

A STUDY TO ENHANCE WATER RESOURCES IN CHINA THROUGH ADVANCED WATER MANAGEMENT UTILISING HYDRODYNAMIC MODELLING.

Li Na 1*, Aiman Al-Odaini 1

1 Lincoln University College, Petaling Jaya, Malaysia.

*Corresponding author: Li Na, Lincoln University College, Petaling Jaya, Malaysia.

ABSTRACT

A three-dimensional water quality model was utilised in order to evaluate the short-term water condition forecast of Nam Theun 2 Reservoir. This model was then utilised in order to investigate a number of different scenarios. Every single one of the objectives that were outlined by the model was accomplished. In fifteen years, it is projected that the level of water column oxygen will increase, although certain regions of the reserve will contain hypolimnion that is devoid of oxygen. Eventually, substances that are hazardous to the ecosystem will disappear from the environment. This article presents two examples that highlight the significance of hydrodynamics in the process of water quality development. Both of these examples involve the use of shifting natural or human-induced forces. The period of time that crucial hydro meteorological events such as rainfall, floods, and drops in air temperature continue to occur throughout the year has a significant impact on the quality of the water that is contained within reservoirs. Hydro meteorological data over several years demonstrates how fundamentally distinct the conditions were. All indications point to the truth that the durations of these episodes have an effect on the quality of the water. If the electrical plant had started up directly after the impoundment commenced, the physical characteristics of the water below it would have been various, based on the results of the calculations. With the use of the model, investigators have investigated the consequences of altering land use in the watershed, which led to an increase in the levels of NO_2 and PO_2 in the watershed. A single currency serves as a metaphor for the competition that exists between various approaches to water consumption.

Keywords: Hydro-Economic Simulation, Water Supply Management, Hydrodynamics Modelling, Environmental Effects, Flood Control.

INTRODUCTION

The burden on ecosystems and natural resources is growing, according to researchers, due to human interference and the resulting rise in human populations. A rise in human populations causes this strain. Any pressure that exists is directly attributable to people's acts. People are feeling the strain because of resources and ecosystems that are to blame. Worldwide, ecosystems are facing a myriad of threats due to the increasing demand for water. This is a major contributor to the worsening water crisis. Because of this, it constitutes one of the causes of water scarcity getting worse (Li et al., 2024). The alluvial plain, also known as the North China

Plain (NCP), covers 320,000 square kilometres and is governed by the provinces of Shandong, Beijing, Hebei, and Henan. Additionally, the North China Plain is also referred to as the NCP. Established in the nation's capital, the National Capital Public Park (NCP) is the product of the confluence of the Yellow, Huai, and Hai rivers. Perhaps these rivers were the driving forces behind the park's inception. Many professional investigations have indicated that water shortages have been more common in the region over the past few decades. The rapid urbanisation of the area, the increase in population, and the unpredictable nature of weather patterns are further factors that have exacerbated this crisis. The present situation is a result of all of these things. Well over 200 million people call the plain home, and it boasts a sizable industrial sector in addition to massive wheat and maize harvests, solidifying its reputation as a formidable economic powerhouse. Furthermore, the plain's ability to economically support a large number of agricultural items is exceptional. Users of water are facing problems due to the increasing water scarcity, even though access to clean water is critical for domestic, agricultural, and industrial use. The availability of potable water is a fundamental requirement for businesses in this sector. When water is scarce, both the ecosystems that depend on it and the water supply are at risk. It becomes increasingly challenging to manage water resources when decision-makers are compelled to prioritise the different water applications within a system. This is because ecosystems and water sources are already under a lot of pressure, and the scarcity of potable water is making matters worse. Overdraft from agricultural uses of surface water storage and excessive pumping from a groundwater aquifer both lead to declining groundwater levels. The degradation that has occurred is due to unintended consequences. This, together with the over-storage of water at the surface, has caused many rivers to dry up or become heavily polluted, leading to the previously mentioned problem (Zeng et al., 2020).

BACKGROUND OF THE STUDY

The Chinese government introduced the “2011 No. 1 Central Policy Document” to provide a policy framework, similar to the European Water Context Directive. Anxieties over water are growing, and this piece will try to alleviate some of those worries. There are many interrelated concerns with water resource management, and while this policy statement primarily addresses water quality and shortage, it is essential to stress the need for an integrated strategy to address all of them (Yao et al., 2022). This is because an integrated strategy is the only solution that can effectively resolve these issues. The objectives cover a lot of ground, including managing water quality, allocating water resources efficiently, and many more. Although there are some shared aspects, these domains are generally considered distinct. Although the researchers can state objectives at a personal level, approaches from different disciplines may present incompatible challenges. Think about it for a second. Several things might influence the quality of the water along rivers, including the pollutants that enter them and the direction in which they flow. If the researchers want to know how much polluted effluent is acceptable, for instance, the researchers need data on reservoir discharges and water allocations. As a result, determining acceptable levels of polluted effluent is not feasible. It just can't be done, and that is the fundamental reason for this. Here, an approach known as integrated management of

water resources (IWRM) can be helpful since it improves resource coordination while simultaneously safeguarding the economy, society, and the environment (Wei et al., 2022).

PURPOSE OF THE STUDY

The rising use of hydro-economic approaches, which are the primary focus of this PhD thesis, has resulted in the emergence of this predicament. The project's objective is to enhance the quality of water, distribution, and storage operation. According to what was stated previously, this is the factor that ultimately resulted in the current circumstance. Water management is viewed as a problem that requires collaborative optimisation by an approach that simulates water management in accordance with that perspective on water management. In order to continue satisfying the requirements of customers, the implementation of this plan will have the goal of lowering the costs that are involved with water distribution across the basin. The procedure is currently being carried out, given that this is the case. First and foremost, if this strategy is going to be successful in accomplishing its goal, it needs to figure out how to make it more efficient. This strategy, which "simplifies the water management difficulty into a case of a single-objective optimisation", is proposed by the authors with the expectation that it will assist in shedding light on this ambiguous subject. The author suggests that applying this strategy as a potential solution to the issue is something that could be considered.

LITERATURE REVIEW

This policy statement, on the other hand, places a strong focus on objectives connected to water quality and water scarcity. These goals are described in the sentence that follows. A few more domains are also addressed by the goals. There are a number of related but often treated as separate domains, such as water quality management, water allocation and water efficiency. In this regard, water efficiency is one of the primary goals. While it's certainly within the realm of possibility to set individualised goals for each individual, solutions developed for one industry can run counter to those put forth by others. This could be a real possibility. The flow of rivers and the discharge of pollutants are two of the many factors that might affect river water quality. Several factors have the potential to affect environmental quality. Before collecting details about reservoir releases and water allocations, for example, it is not possible to produce a precise figure of the authorised volumes of polluting effluents. Meeting demands is not possible because of this. The reason behind this is that it is completely impractical to do so. Short for "integrated water resources management", this approach ensures social equity, economic and ecological resilience, and the protection of natural resources through better coordination of available resources (Mashaly & Fernald, 2020).

RESEARCH QUESTION

What is the impact of advanced water management on hydrodynamic modelling?

RESEARCH METHODOLOGY

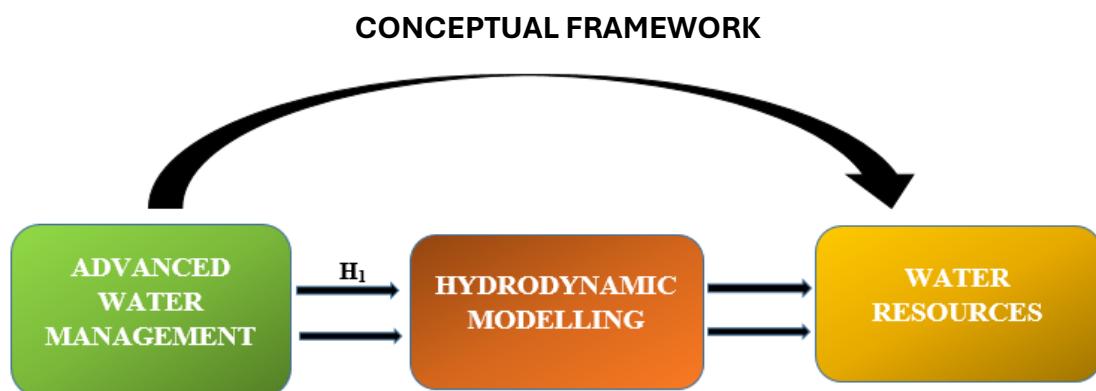
Research design

Quantitative data analysis was performed using SPSS version 25. The researchers employed the odds ratio and the 95% confidence interval to assess the strength and direction of the statistical link. The researchers determined a statistically significant criterion at $p < 0.05$. A comprehensive analysis elucidated the fundamental characteristics of the data. Data obtained from surveys, polls, and questionnaires, as well as data examined through computer statistical techniques, are frequently assessed using quantitative methods.

Sampling

Research participants completed questionnaires to furnish information for the study. Utilising the Rao-soft tool, researchers ascertained that the study comprised 657 individuals. Researchers disseminated 896 questionnaires to the public. The researchers obtained 823 replies, eliminating 45 due to incompleteness, yielding a final sample size of 778.

Data and Measurement


The study primarily employed data gathered from a questionnaire survey. The participant's essential demographic information was requested first. Participants were subsequently given a 5-point Likert scale to evaluate the online and offline channels. The researchers rigorously scrutinised several resources, especially online databases, for this secondary data collecting.

Statistical Software

The statistical analysis was conducted using SPSS 25 and Microsoft Excel.

Statistical Tools

Descriptive analysis was employed to comprehend the essential attributes of the data. The researcher must analyse the data utilising ANOVA.

RESULTS

Factor Analysis: One typical use of Factor Analysis (FA) is to verify the existence of latent components in observable data. When there are not easily observable visual or diagnostic markers, it is a prevalent practice to employ regression coefficients to generate ratings. In FA, models are crucial for success. The objectives of modelling are to identify errors, intrusions, and evident correlations. A method to evaluate datasets generated by multiple regression analyses is the Kaiser-Meyer-Olkin (KMO) Test. They confirm that the model and sample variables are representative. The data exhibits duplication, as indicated by the figures. Reduced proportions facilitate comprehension of the data. The output for KMO is a numerical value ranging from zero to one. A KMO value between 0.8 and 1 indicates that the sample size is adequate. These are the permissible boundaries, according to Kaiser: The following are the acceptance criteria set by Kaiser:

A pitiful 0.050 to 0.059, below average 0.60 to 0.69

Middle grades often fall within the range of 0.70-0.79.

With a quality point score ranging from 0.80 to 0.89.

They marvel at the range of 0.90 to 1.00.

The results of Bartlett's test of sphericity are as follows: approx. chi-square

df=190

sig.=.000

This confirms the legitimacy of claims made just for sampling purposes. Researchers employed Bartlett's Test of Sphericity to ascertain the relevance of the correlation matrices. The Kaiser-Meyer-Olkin measure of 0.957 signifies that the sample is sufficient. The p-value is 0.00, according to Bartlett's sphericity test. A positive outcome from Bartlett's sphericity test signifies that the correlation matrix is not an identity matrix.

Table1. Testing for KMO and Bartlett's; Sampling Adequacy Measured by Kaiser-Meyer-Olkin
0.957.

KMO and Bartlett's Test		
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.957
Bartlett's Test of Sphericity	Approx. Chi-Square	3252.968
	df	190
	Sig.	.000

Bartlett's Test of Sphericity further validated the overall significance of the correlation matrices. The Kaiser-Meyer-Olkin measure of sample adequacy is 0.957. The researchers calculated a p-value of 0.00 using Bartlett's sphericity test. The correlation matrix was considered invalid because of a significant outcome from Bartlett's sphericity test.

INDEPENDENT VARIABLE

Advance Water Management: To meet the requirements of an increasing population, the production of food, the preservation of ecosystems, and the upkeep of health and social stability, water scarcity is becoming an increasingly important issue. Additionally, the environment faces threats including waterlogging and salinity in several canal commands, seawater intrusion in coastal areas, the drying up of wetlands, low stream flows, and other related issues. When it comes to the availability of water sources, the influence of climate change has had a detrimental effect. The regular occurrence of catastrophic events, such as droughts and floods, significantly complicates the issues of water shortages and agricultural output. The tremendous spatial difference in increasing irrigated territory is one of the challenges that a country as large as China must contend with. Other challenges include the regional and temporal variety of floods and droughts (Jiang et al., 2020). There is a significant amount of difficulty that the irrigated agricultural ecology must contend with. Inadequate irrigation efficiency, particularly for canal irrigation, as well as regional disparities in groundwater development, low utilisation of wastewater for irrigation, and inadequate filtering of wastewater are the two new challenges that the nation is facing. Increasing the irrigated land area in the country introduces a number of new issues, including spatial imbalance. One of the most important techniques for developing a sustainable water regime in a rainfed agroecosystem is, among other things, the conservation of rainfall on a range of landforms and the efficient utilisation of this water. The development of the crop and its yield will both improve because of this. When it comes to management, the most challenging aspect is dealing with waterlogged areas and locations that are prone to flooding. On the other hand, a variety of technological solutions can help overcome the challenges. In an irrigated agricultural ecosystem, there are a number of different options that can be implemented to improve the efficiency with which irrigation water is used. Some of these options include the performance of the canal irrigation system, the introduction of the pressurised irrigation system, drip fertigation for improved water and nutrient use efficiency, and the use of sensors for precise irrigation in the field. A number of these options are available (Wang et al., 2019).

MEDIATING VARIABLES

Hydrodynamic Modelling: The water's dynamic relationship. a noun that is constructed as a singular noun but is spoken in the plural sense. Hydrodynamics is a discipline of physics that focuses on the study of fluid dynamics, which may be defined as the understanding of the forces that operate on solid objects that are submerged in fluids or that are moving relative to fluids. The hydrodynamic forces that include pressure and fluid shearing are responsible for propelling

the minute particles that are propelled by fluids that are in motion. To characterise these forces and the way in which they are connected to the velocities of particles and fluids, the phrase “dimensionless Reynolds number” is utilised (Guo et al., 2019). The hydrodynamic models are built on the foundation of the restoration of the no-slip boundary condition in continuum flow models. There are many different kinds of these models that have been proposed for the purpose of analysing the behaviour of gas flows in the continuum-transition regime. In the domain of scientific inquiry known as hydrodynamics, the primary focus is on the investigation and modelling of fluids that are in motion. The primary emphasis is placed on the teaching of the fundamental principles of conservation of mass, energy, and momentum. Fluids that are moving contain kinetic energy in their motion. This energy can be converted into potential energy, which can be expressed as height or pressure, and vice versa (Mu et al., 2020).

DEPENDENT VARIABLE

Water Resources: The fluid interaction that takes place between the water. The term “plural noun” refers to a noun that is used in the plural form sense, despite the fact that it was originally constructed as a singular word. The investigation of fluid dynamics is the primary emphasis of the field of hydrodynamics, which is a subfield of physics. When it comes to solid things that are submerged in fluids or that are moving relative to fluids, fluid dynamics can be defined as the study of the forces that work on those solid objects. The field of study known as hydrodynamics is primarily concerned with the investigation of fluid dynamics. The hydrodynamic forces that involve pressure and fluid shearing are responsible for propelling those minute particles that are pushed by fluids that are in motion. These forces are the ones that are responsible for the particles’ forward motion (Han et al., 2020). For the purpose of defining these forces and the manner in which they are connected with the velocity of particles and fluids, the phrase “dimensionless Reynolds number” is utilised. In order to accomplish this end, the word is employed. Hydrodynamic models are developed on the basis of the restoration of the no-slip boundary condition when it comes to continuum flow models. This is the case when it comes to the construction of the models. In order to achieve the objective of studying the behaviour of gas flows in the continuum-transition regime, a broad range of these models have been presented. All of these devices are available in a wide range of different configurations. The primary focus of the academic discipline known as hydrodynamics is the investigation and modelling of fluids that are in motion when they are being studied. This is the primary focus of the profession for the most part. Within the context of this procedure, the teaching of the fundamental principles of conservation of mass, energy, and momentum is of the utmost significance. The motion of fluids that are in motion contains kinetic energy. Kinetic energy is what makes motion possible. This energy can be converted into potential energy, which can be expressed as either height or pressure, and vice versa. This transformation is conceivable (Odeh et al., 2019).

Relationship between Advance Water Management and Hydrodynamic Modelling: To ensure that water supplies are utilised in a manner that is both sustainable and equitable,

cutting-edge technology is utilised to control them. When it comes to the environment, the economy, and the overall health of people, these systems are of the utmost importance. These forward-thinking solutions make use of a wide range of water management concepts and instruments to lessen the harm that is brought on by droughts and floods, as well as to safeguard water and cut down on pollution. In order for us to be able to deal with the mounting difficulties that are created by things like global warming and a growing population, it's necessary to make sure that there is sufficient water of a high quality for the present generation and the generations that will come after us (Zeng et al., 2020). Water resource management, often known as WRM, encompasses all aspects of water management, including development, planning, and management, regardless of the manner in which it is utilised. This suggests that the researchers must closely monitor both the accessibility of water sources and the quality of the water. Included in this definition are all aspects of water management, including the fundamental infrastructure and organisations as well as information about systems and incentives. Water is an element that is essential to the survival of all living things; therefore, it is of the utmost importance that it is utilised in a responsible manner. The researchers can ensure effective management of water resources to guarantee universal access to clean water. Listed below are some important considerations to take into account: The requirement for clean water will increase in tandem with the expansion of the global population. The Management of Water Resources is a journal that allows individuals to exchange their expertise and experiences regarding the management of water resources, as well as publishing new research. It is stated that its objective is to assist in the expansion of water resources. Water Resource Management is a global publication that disseminates and publishes new research. This publication primarily discusses policy and strategy for the evaluation, growth, protection, and administration of water resources. All aspects of water resource management are covered by the contributions, beginning with planning and design and continuing through operation, maintenance, and management (Yao et al., 2022).

On the basis of the above discussion, the researcher formulated the following hypothesis, which was analyse the relationship between Advance Water Management and Hydrodynamic Modelling.

“ H_0 : There is no significant relationship between Advance Water Management and Hydrodynamic Modelling.”

“ H_1 : There is a significant relationship between Advance Water Management and Hydrodynamic Modelling.”

Table 2. H1 ANOVA Test.

ANOVA					
Sum	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	39588.620	287	5655.517	1055.922	.000
Within Groups	492.770	490	5.356		
Total	40081.390	777			

This research yields substantial results. The value of F is 1055.922, indicating significance with a p-value of 0.000, which is below the 0.05 alpha level. This denotes the "*H₁: There is a significant relationship between Advance Water Management and Hydrodynamic Modelling*" is accepted and the null hypothesis is rejected.

DISCUSSION

China is able to better manage its water supply by utilising hydrodynamic modelling, which gives China with a realistic simulation of how water flows and how contaminants migrate through waters. This allows China to better administer its water supply. Because of this, China is able to more effectively manage its water resources. As a consequence of this, it is now conceivable for cities to expand in a manner that does not cause damage to the environment, to manage the river systems as a whole, and to control the levels of flooding that occur. In order to achieve this goal, it takes use of data gathered from GIS systems and hydrological models to forecast the existence of future floods, monitor the levels of pollution, manage storage reservoirs, and get ready for the consumption of water. It is possible to accomplish all of this while also addressing challenges that have surfaced as a consequence of urbanisation and climate change. When it comes to the management of water quantity and quality, those who are assigned the responsibility of making judgements may discover that this intricate model is of tremendous aid to them. The water resources of China provide a significant difficulty due to the fact that they cannot be dispersed in a manner that is consistent across the entire country. In spite of the fact that there is a sizable population and a vast amount of agricultural production in the northern region, there is not enough water available there. On the other side, the southern region contains a sizeable quantity of surface water throughout the region. In response to the situation, the Chinese government has made substantial expenditures in water infrastructure projects. One example of this is the South-to-North Water Diversion Plan, which is an initiative that aims to transfer water to areas that are experiencing drought. One example of the activities done by the Chinese government is the project that is being examined here. It is of the utmost need to enhance management, ensure water security, and embrace sustainable development practices in order to solve concerns such as pollution, excessive extraction of groundwater for mining, and projections of demand being more than the supply that is already available. These three critically important actions need to be given priority. Coupled models have the ability to improve the dispatch of urban water systems that are meant for disaster aid. This might be accomplished through the simulation of urban floods and waterlogging. Following the adoption of these

modifications, there will be an increase in the efficiency with which water is delivered. With the assistance of these models, researchers are able to conduct more accurate analyses and generate more accurate predictions regarding water resources.

CONCLUSION

The objective of this phd study is to identify ways to improve the quality of water, availability, and distribution by increasing the use of hydro economic methods,” the investigator points out. With the goal of lowering the cost of water distribution across the basin and meeting consumer demand at the same time, the devised method portrays water management as a joint optimisation problem. The method captures the core of reducing the complex water management problem to a case of optimisation with a single target. This approach was essential in solving a difficult water management problem in a river basin in China. An extremely simple formalisation of the management problem was achieved by the first system through the use of the water value technique, a kind of stochastic dynamic programming. By creating water value tables, it became possible to get a quantitative understanding of the primary water issues. The visually beautiful and functional design of these tables made them perfect for water management. Assuming there were no regulations limiting the distribution of groundwater, the idea went like this: customers would keep pumping groundwater until their needs were met. Research also showed that the South-to-North Water Transfer Project’s middle route would help remove water deficiencies by making better use of available resources. These discoveries were supplementary to those that came before. Using the Streeter-Phelps equation to determine the lowest feasible level of dissolved oxygen farther downstream, controls were set up to achieve this goal, and the biological oxygen requirement was used to model the creation of pollutants. Computer approaches were able to successfully address the stochastic dynamic programming optimisation challenge, despite the fact that it had non-linear constraints and an objective function that was not linear. Users further down the pipeline were given surface water to dilute, as shown in the data. No matter how stringent the water quality restrictions were, the ecological discharges were consistently greater than the minimum requirement. Water quality should be considered in traditional ways of assessing water supply and demand, regardless of whether the total price increase is smaller than the deficit-related expenditures.

REFERENCES

1. Guo, X., Feng, Q., Si, J., Xi, H., Zhao, Y., & Deo, R. C. (2019). Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. *Journal of Hydrology*, 579, 124212.
2. Han, Q., Tong, R., Sun, W., Zhao, Y., Yu, J., Wang, G., ... & Jin, Y. (2020). Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade. *Science of the Total Environment*, 701, 134929.

3. Jiang, L., Bao, A., Yuan, Y., Zheng, G., Guo, H., Yu, T., & De Maeyer, P. (2020). The effects of water stress on croplands in the Aral Sea basin. *Journal of Cleaner Production*, 254, 120114.
4. Li, X., Xue, S., Hou, J., Guo, Y., Liu, Y., Ma, H., ... & Wang, S. (2024). Hydrodynamic model-driven evolutionary algorithm-based operation optimization of an experimental drainage pumping station. *Journal of Water and Climate Change*, 15(11), 5540-5556.
5. Mashaly, A. F., & Fernald, A. G. (2020). Identifying capabilities and potentials of system dynamics in hydrology and water resources as a promising modeling approach for water management. *Water*, 12(5), 1432.
6. Mu, X., Wang, H., Zhao, Y., Liu, H., He, G., & Li, J. (2020). Streamflow into Beijing and its response to climate change and human activities over the period 1956–2016. *Water*, 12(3), 622.
7. Odeh, T., Mohammad, A. H., Hussein, H., Ismail, M., & Almomani, T. (2019). Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. *Environmental Earth Sciences*, 78(1), 40.
8. Wang, K., Davies, E. G., & Liu, J. (2019). Integrated water resources management and modeling: A case study of Bow river basin, Canada. *Journal of Cleaner Production*, 240, 118242.
9. Wei, H., Zhang, L., & Liu, J. (2022). Hydrodynamic modelling and flood risk analysis of urban catchments under multiple scenarios: a case study of Dongfeng Canal district, Zhengzhou. *International journal of environmental research and public health*, 19(22), 14630.
10. Yao, Y., Hu, C., Liu, C., Yang, F., Ma, B., Wu, Q., ... & Soomro, S. E. H. (2022). Comprehensive performance evaluation of stormwater management measures for sponge city construction: A case study in Gui'an New District, China. *Journal of Flood Risk Management*, 15(4), e12834.
11. Zeng, C., Ma, J., Cao, M., Xu, C., Qi, W., & Wang, L. (2020). Modeling water allocation under extreme drought of south-to-north water diversion project in Jiangsu Province, Eastern China. *Frontiers in Earth Science*, 8, 541664.